介绍
比特币是目前流动性最好且最安全的区块链。在铭文爆发后,BTC 生态吸引了大量开发者涌入,他们很快关注到了 BTC 的可编程性问题与扩容问题。通过引入不同的思路,如 ZK、DA、侧链、rollup、restaking 等方案,BTC 生态的繁荣正迎来全新高点,俨然已经成为本轮牛市的主线剧情。
然而,在这些设计中,许多都延续了 ETH 等智能合约的扩容经验,且必须依赖一个中心化的跨链桥,这是系统的薄弱点。少有方案是基于 BTC 本身的特点设计的,这与 BTC 本身的开发者体验并不友好有关。由于一些原因使得它没法像以太坊一样运行智能合约:
- 比特币的脚本语言为了安全性而限制了图灵完备性,这使得没法像以太坊一样执行智能合约。
- 同时比特币区块链的存储是针对简单的交易而设计,没有对复杂的智能合约进行优化。
- 最重要的是比特币没有虚拟机来运行智能合约。
2017 年隔离见证 (SegWit) 的引入增加了比特币的区块大小限制;2021 年的 Taproot 升级使得批量签名验证成为可能,从而更轻松、更快速地处理交易(解锁原子交换、多重签名钱包和有条件付款)。这都使的比特币上的可编程性成为可能。
2022 年,开发者 Casey Rodarmor 提出了他的“Ordinal Theory”,概述了聪的编号方案,可以将图像等任意数据放入比特币交易中,为直接在比特币链上嵌入状态信息和元数据开辟了新的可能性,这对于需要可访问和可验证状态数据的智能合约等应用程序来说,开辟了一条新的思路。
目前,大多数扩展比特币编程性的项目依赖于比特币的二层网络(L2),这使得用户必须信任跨链桥,成为L2获取用户和流动性的一大挑战。此外,比特币目前缺乏原生的虚拟机或可编程性,无法在无需额外信任假设的情况下实现L2与L1的通信。
结论
在 BTC 可编程性设计方面,RGB、RGB++ 和 Arch Network 各有特色,但都延续了绑定 UTXO 的思路,UTXO 的仅一次使用的鉴权属性更适合智能合约用于记录状态。
但其劣势也非常明显,即糟糕的用户体验,与 BTC 一致的确认延迟与低性能,即只扩展了功能,但没有提升性能,这在 Arch 与 RGB 中较为明显;而 RGB++ 的设计虽然通过引入更高性能的 UTXO 链提供了更好的用户体验,但也提出了额外的安全性假设。
随着跟多开发者加入 BTC 社区,我们会见到更多的扩容方案,如 op-cat 的升级提案也在积极讨论中。而切合 BTC 原生属性的方案是需要重点关注的,UTXO 绑定方法是不升级 BTC 网络的前提下,扩展 BTC 编程方式的最有效方法,只要能解决好用户体验问题,将是 BTC 智能合约的巨大进步。